

django-smart-selects documentation

Contents

	1. Installation

	2. Settings

	3. Chained Selects
	ChainedForeignKey options

	4. Chained ManyToMany Selects
	Using chained fields in the admin

	ChainedManyToManyField options

	5. Grouped Selects

	6. Usage In Templates

Indices and tables

	Search Page

1. Installation

	Install django-smart-selects using a tool like pip:

$ pip install django-smart-selects

	Add smart_selects to your INSTALLED_APPS

	Add the smart_selects urls into your project’s urls.py. This is needed for the Chained Selects and Chained ManyToMany Selects. For example:

urlpatterns = patterns('',
 url(r'^admin/', include(admin.site.urls)),
 url(r'^chaining/', include('smart_selects.urls')),
)

	You will also need to include jQuery in every page that includes a field from smart_selects, or set JQUERY_URL = True in your project’s settings.py.

2. Settings

JQUERY_URL
: jQuery 2.2.0 is loaded from Google’s CDN if this is set to True. If you would prefer to
use a different version put the full URL here. Set JQUERY_URL = False
to disable loading jQuery altogether.

USE_DJANGO_JQUERY
: By default, smart_selects loads jQuery from Google’s CDN. However, it can use jQuery from Django’s
admin area. Set USE_DJANGO_JQUERY = True to enable this behaviour.

3. Chained Selects

Given the following model:

class Continent(models.Model):
 name = models.CharField(max_length=255)

class Country(models.Model):
 continent = models.ForeignKey(Continent)
 name = models.CharField(max_length=255)

class Location(models.Model):
 continent = models.ForeignKey(Continent)
 country = models.ForeignKey(Country)
 area = models.ForeignKey(Area)
 city = models.CharField(max_length=50)
 street = models.CharField(max_length=100)

Once you select a continent, if you want only the countries on that continent to be available, you can use a ChainedForeignKey on the Location model:

from smart_selects.db_fields import ChainedForeignKey

class Location(models.Model):
 continent = models.ForeignKey(Continent)
 country = ChainedForeignKey(
 Country,
 chained_field="continent",
 chained_model_field="continent",
 show_all=False,
 auto_choose=True,
 sort=True)
 area = ForeignKey(Area)
 city = models.CharField(max_length=50)
 street = models.CharField(max_length=100)

ChainedForeignKey options

chained_field (required)

The chained_field indicates the field on the same model that should be chained to. In the Continent, Country, Location example, chained_field is the name of the field continent in model Location.

class Location(models.Model)
 continent = models.ForeignKey(Continent)

chained_model_field (required)

The chained_model_field indicates the field of the chained model that corresponds to the model linked to by the chained_field. In the Continent, Country, Location example, chained_model_field is the name of field continent in Model Country.

class Country(models.Model):
 continent = models.ForeignKey(Continent)

show_all (optional)

show_all indicates if only the filtered results should be shown or if you also want to display the other results further down.

auto_choose (optional)

auto_choose indicates if auto select the choice when there is only one available choice.

sort (optional)

sort indicates if the result set should be sorted lexicographically or not. Disable if you want to use the Model.ordering option. Defaults to True.

4. Chained ManyToMany Selects

The ChainedManyToManyField works as you would expect:

from smart_selects.db_fields import ChainedManyToManyField

class Publication(models.Model):
 name = models.CharField(max_length=255)

class Writer(models.Model):
 name = models.CharField(max_length=255)
 publications = models.ManyToManyField('Publication', blank=True, null=True)

class Book(models.Model):
 publication = models.ForeignKey(Publication)
 writer = ChainedManyToManyField(
 Writer,
 chained_field="publication",
 chained_model_field="publications")
 name = models.CharField(max_length=255)

Using chained fields in the admin

Do not specify the field in the ModelAdmin filter_horizontal list. Instead, simply pass horizontal=True to the ChainedManyToManyField:

from smart_selects.db_fields import ChainedManyToManyField

class Publication(models.Model):
 name = models.CharField(max_length=255)

class Writer(models.Model):
 name = models.CharField(max_length=255)
 publications = models.ManyToManyField('Publication', blank=True, null=True)

class Book(models.Model):
 publication = models.ForeignKey(Publication)
 writer = ChainedManyToManyField(
 Writer,
 horizontal=True,
 verbose_name='writer',
 chained_field="publication",
 chained_model_field="publications")
 name = models.CharField(max_length=255)

ChainedManyToManyField options

chained_field (required)

The chained_field indicates the field on the same model that should be chained to. In the Publication, Writer, Book example, chained_field is the name of the field publication in model Book.

class Book(models.Model):
 publication = models.ForeignKey(Publication)

chained_model_field (required)

The chained_model_field indicates the field of the chained model that corresponds to the model linked to by the chained_field. In the Publication, Writer, Book example, chained_model_field is the name of field publications in Writer model.

class Writer(models.Model):
 publications = models.ManyToManyField('Publication', blank=True, null=True)

auto_choose (optional)

auto_choose indicates if auto select the choice when there is only one available choice.

horizontal (optional)

This option will mixin Django’s FilteredSelectMultiple to work in the Django admin as you expect

5. Grouped Selects

If you have the following model:

class Country(models.Model):
 continent = models.ForeignKey(Continent)

class Location(models.Model):
 continent = models.ForeignKey(Continent)
 country = models.ForeignKey(Country)

And you want to group countries by their continent in the HTML select list, you can use a GroupedForeignKey:

from smart_selects.db_fields import GroupedForeignKey

class Location(models.Model):
 continent = models.ForeignKey(Continent)
 country = GroupedForeignKey(Country, "continent")

6. Usage In Templates

In templates, continue using Django forms or modelforms as usual. Just include {{ form.media.js }} within your form. This will automatically add the following Javascript files into your page:

<script src="/static/smart-selects/admin/js/chainedfk.js"></script>
<script src="/static/smart-selects/admin/js/bindfields.js"></script>

Here’a a basic usage example:

<form method="post">
 {% csrf_token %}
 {{ form.media.js }}
 {{ form.as_p }}
 <input type="submit" value="Submit" />
</form>

Index

 nav.xhtml

 Table of Contents

 		
 django-smart-selects documentation

 		
 Installation

 		
 Settings

 		
 Chained Selects

 		
 ChainedForeignKey options

 		
 chained_field (required)

 		
 chained_model_field (required)

 		
 show_all (optional)

 		
 auto_choose (optional)

 		
 sort (optional)

 		
 Chained ManyToMany Selects

 		
 Using chained fields in the admin

 		
 ChainedManyToManyField options

 		
 chained_field (required)

 		
 chained_model_field (required)

 		
 auto_choose (optional)

 		
 horizontal (optional)

 		
 Grouped Selects

 		
 Usage In Templates

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

